A Survey of Data Mining Clustering Algorithms
نویسندگان
چکیده
Clustering is a technique used in data mining that groups similar objects into one cluster, while dissimilar objects are grouped into different clusters. The clustering techniques can be categorized into partitioning methods, hierarchical methods, density-based methods and grid-based methods. The different partitioning methods studied here are k-means and k-medoids. The different hierarchical techniques studied here are BIRCH and CHAMELEON. The different grid-based techniques which are described are DBSCAN and DENCLUE. Lastly, the different techniques which are used in grid-based technique, like STING and CLIQUE are described. This paper aims to provide a brief overview and comparison of these different clustering algorithms and methods.
منابع مشابه
Clustering and Ranking University Majors using Data Mining and AHP algorithms: The case of Iran
Abstract: Although all university majors are prominent and the necessity of their presences is of no question, they might not have the same priority basis considering different resources and strategies that could be spotted for a country. This paper focuses on clustering and ranking university majors in Iran. To do so, a model is presented to clarify the procedure. Eight different criteria are ...
متن کاملارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها
Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...
متن کاملAn Improved SSPCO Optimization Algorithm for Solve of the Clustering Problem
Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...
متن کاملAn Improved SSPCO Optimization Algorithm for Solve of the Clustering Problem
Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملUsing Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کامل